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We consider the deformation of a thin thread of viscous liquid (viscida) as its 
ends are slowly moved together. Equations are deduced which are capable of 
describing the motion of the thread when the displacement of the axis from a 
straight line is either on the scale of the thread thickness (problem 1) or on the 
much larger scale of the thread length (problem 2).  In  the former case it is shown 
analytically that an arbitrary initial displacement evolves in such a wky that, 
as the appropriately scaled time r becomes large, the first mode of the disturbance 
emerges in a dominant role with an amplitude that is proportional to ri  and 
independent of the initial amplitude. This provides the initial condition for 
problem 2, for which a numerical description is obtained. 

In  addition, we analyse the situation when the ends of the viscida are slowly 
pulled apart. In  this case the high frequency end of the spectrum dominates as an 
arbitrary disturbance decays. 

1. Introduction 
The problem of the buckling of a viscoelastic strip has received a great deal 

of attention and many of its aspects are now well understood. This problem has 
two natural limits of course: the elastic limit (the problem of the elastica) and 
the viscous limit. We shall refer to the latter as the problem of the viscida, and 
its study is the subject of the present paper. 

The response of layers of viscous fluid to end loads appears to be of geophysical 
interest, and this provides part of the motivation for the present study. Thus 
Biot (1964) discussed the @astic deformation of thin layers of rock in the earth’s 
crust by treating the motion as that of a slow viscous fluid. His analysis was 
restricted to small deformations. 

Additional motivation is provided by a brief qualitative experiment described 
by Taylor (1969). In  that experiment, a viscida was floated on mercury and its 
ends were pushed together. The resulting deformed shape was somewhat reminis- 
cent of the third mode of buckling of an elastica, a result which Taylor explained 
by noting the analogy between the equations of linear elasticity and those of slow 
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viscous flow. We shall see in the subsequent analysis the extent to which this 
explanation is, and is not, correct. 

The specific problem that we shall consider is that of a two-dimensional 
viscida, immersed in a vacuum, whose ends are moved. This motion is assumed 
to be so slow that all the inertia terms may be neglected. In  a certain sense, 
this can be thought of as a model for Taylor's experiment. It also represents a 
generalization of Biot's work, in the sense that the deformations are not, in 
general, small. 

The foundation of our analysis is the assumption that if the length of the 
viscida is O( I) then the thickness is O(E), E < 1, so that an asymptotic description 
is possible. Certain details of the analysis depend on the order of magnitude of 
the centre-line displacement and calculations are carried out when this is either 
O(e)  or O(1). The rate of elongation of the viscida plays a role in the former case, 
but not in the latter. 

The motion of the viscida is deduced by formally expanding the solution to 
the Stokes equations in powers of E .  The terms in this expansion satisfy simpli- 
fied equations which can be integrated, just as the equations of lubrication theory 
can be integrated. The general solutions contain arbitrary functions of 5, the 
distance measured along the centre-line, and these functions are found by satis- 
fying stress-free conditions at  the two free surfaces. There is in general a feed- 
back mechanism, in that the solution cannot be found to a particular order 
without consideration of higher-order terms in the expansion. Use of integrated 
equations which represent a global balance of forces and moments substantially 
simplifies the analysis. 

The central result of the above procedure is a partial differential equation for 
a, the slope of the centre-line, as a function of time and distance from one end. 
This differential equation contains two unknown functions of time which are 
essentially determined from integral constraints on a. When the centre-line 
deviation is small, the equation may be linearized and a complete discussion 
based on eigenfunction expansions is possible. When a is not small, numerical 
calculations are necessary. Parts of this analysis are based on the Ph.D. thesis 
of Nachman (1973). 

2. Equations and kinematics 
In  order to describe the motion of the constituent liquid of the viscida, we 

choose a curvilinear co-ordinate system based on the instantaneous position 
of the centre-line. Thus 5 is measured along the centre-line from the left-hand 
end of the threaa and n is the co-ordinate normal to the centre-line (figure 1). 
The exact equations for an inertialess, incompressible, viscous fluid may then be 
written in the form a 4 a s  + a(hv)/an = 0. (2.la) 

( 2 . l b )  

(2.1c) 
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FIGURE 1. Co-ordinate system. 

where h is related to K ,  the curvature of the axis, by 
h = 1 +nK ( K  = a@s) 

and the components of the stress tensor are related to the velocity components by 
means of the constitutive relations 

pnn = - p  + 2 p  av/an, 

( 2 . 2 4  

(2.2b) 

(2.2c) 

The momentum equations, when written in terms of the velocity components, are 

l aP+p-  - -(ha)-- = O ,  

= O .  

has an a 1'" h an avll as ( 2 . 3 ~ )  

(2.3b) 

These equations have to be solved subject t o  certain boundary conditions a t  
the edges of the strip n = f +T, where T is the thickness. In  the absence of surface 
tension the stress tensor vanishes at the edges, whence at n = $T, 

pnn(l+gKT)-g(aT/as)~n,= 0, ( 2 . 4 ~ )  
pn,(l++KT)-B(aT/as)pss = 0, (2.4b) 

pnn( I - 4KT)  + $(aT/aS)Pns = 0, (2.5a) 

Pns(i  - ~ K T )  + *(aT/as)p, = 0. (2.5b) 

It is wor&h noting that, since the inertia terms have been neglected, time does 
not explicitly appear in the equations or boundary conditions, and in fact plays 
no role in the analysis until we consider the kinematics of the thread motion. 

We shall make use of the equations as written above in their local form, but in 
addition, to avoid a substantial amount of algebra, the integrated form of the 
equations will also be used. Thus, defining mean quantities by 

and at n = -+T) 

- q = -  ' S t T  qdn ,  
-)T 

1-2 
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integration of (2.1 b) followed by application of the boundary conditions (2.4) 
and (2.5) yields the result 

a(Tpss)/as + K T ~ , ,  = 0, (2.6a) 

which represents a balance of forces parallel to the centre-line. A perpendicular 
balance can be found by integration of (2.1 c )  : 

a(Tpss)/as - K T ~ ~ ~  = 0. (2.6b) 

Finally, a balance of moments may be deduced by multiplying (2.1 b) by n before 
integrating, so that 

aM/aS - ~ 3 % ~  = 0, ( 2 . 6 ~ )  
where the bending moment is 

-w=s_,,dnnPss. 3T 

An important equation that may be deduced from (2.6) is 

which may be integrated to yield 

aM/& = A sin a + B cos a, (2.8) 

where A and B are unknown functions of time. We shall subsequently establish 
an independent functional relationship between M and a, so that (2.8) then 
becomes the central equation governing the problem. 

The formulation of the problem is completed by a description of the kine- 
matics. For our purposes it is sufficient to consider, in this respect, a viscida for 
which the velocity does not depend on n. A line element of fluid particles charac- 
terized at  time t by 6s and located a t  the centre-line remains on the centre-line 
during the motion and a t  time t +- St is characterized by Ss', where 

6s' = 6s + 6t sq. 

sq = & S a q / a ~ .  

(2-9) 

Here, 6q is the difference between the velocities of the ends of the element, so that 

Taking the scalar product of 6s' with itself, retaining only linear terms in St, gives 

SS' = 6s l + S t -  - , [ ss * aql as 
in other words, 6s' = ss[i + st(au/as +VK)].  (2.10) 

This describes the elongation of the element. On the other hand, the cross- 
product of Ss' with 6s'yields 

sa 6s aq 
6t 8s as, 

- k - = - x -  

where &a is the change in inclination of the element and k is the unit normal to 
the plane containing the centre-line. Thus 

sapt = ( - av/as + U K ) .  (2.11) 
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Results like (2.10) and (2.11) are familiar in the theory of elasticity when the 
deformation is q 6t (Love 1944). 

Since the fluid is incompressible, the extension predicted by (2.10) implies that 
the thickness of an element of the viscida changes by an amount 

Moreover, since s is measured from the left-hand end of the viscida, we have the 

x!yt = - T(au/as + V K ) .  (2.12) 

additional result a a  
(2.13) 

The relevance of these kinematic results stems from the fact that, when the 
viscida is very thin, the leading term of w is independent of n, and the leading 
term of u depends, a t  most, linearly on n. This linear dependence of u merely 
causes a shearing distortion of a viscida element and does not affect its rotation 
or thickening rate. Thus these quantities are correctly given, to leading order, 

The equations deduced in this section [(2.6)-(2.8) and (2.11)-(2.13)] are all 
global equations, and by themselves can not be used to deduce the motion of the 
viscida. There is, of course, a close analogy between the equations of linear 
elasticity and those of Stokes flow, so that, since for the elastica the bending 
moment M is proportional to the curvature aalas, we can infer for the present 
problem that M is proportional to the rate of change of curvature, 

by (2.1 1)-(2.13). 

Moreover, an elastica whose centre-line has an O( 1) deflexion does not change its 
length when it bends, and the equivalent result here (when K is O(1)) is that 
au/as+vK is o(1). These two additional results close the system, and detailed 
analysis of (2.3) is not necessary when K is O(1). However, when K is O(E) ,  the 
elongation question is a more subtle one and detailed analysis can not be avoided. 
This is described in $3. 

3. Analysis when the curvature K = O(E) 
3.1. Derivation of the governing equation for a 

I n  this section a solution of the governing equations is obtained which is valid 
when the centre-line curvature is of the order of magnitude of the thickness. 
The problem is characterized by a velocity (the relative speed of the two ends 
of the viscida) and two lengths (one equal to the long dimension of the viscida, 
the other characteristic of its thickness). A system of units is chosen such that the 
viscida length and the relative speed of its ends are both O(1). E ,  the small para- 
meter of the problem, is then defined such that the thickness is O(E).  The analysis 
of this section is then based on the expansions 

~1 N E-%-~+V,+ ..., 
u N U0+EU1+.", P Po + EPl+ . . ., 

T N ET~+E~T,+ ..., 

a N 6a1+6%2+. . . ,  K N &1+E2Kz+..., 
n = EN,  t = 6%. 



6 J .  D.  Buckmaster, A .  Nachrnan and L. Ting 

The subscripted variables are functions of s, N and the scaled time r. Starting 
the expansion for u with an O(e-l) term implies that an U(s2)  horizontal displace- 
ment of the ends gives rise to an O(e) vertical displacement of the centre-line. 
Such a result would be expected for an inextensible strip, and is also appropriate 
for the viscida problem. 

If the above expansions are substituted into the governing equations (2.3), 
a sequence of simpler equations arises, each of which may be integrated with 
respect to N. This integration introduces arbitrary functions of s, and certain 
constraints must be imposed on these functions in order to satisfy the boundary 
conditions (2.4) and (2.5). It is characteristic of problems of this type (e.g. Buck- 
master 1973) that the emergence of the constraints is often delayed. For example 
a necessary constraint on O(1) terms may only be uncovered when the O ( E )  or 
O(G)  terms are examined. 

The details of this procedure are straightforward, and only the following results 
will be needed: 

and 

where 

and 

21-1 = v&), uo = uoo(s) + NUOl(S)  

Po = P O O ( S )  + N(V’L1- u;d, 
VL,+UOl = 0 

p o o + 2 ~ ( K 1 v ~ l + u ~ )  = 0. 

The time dependence is implicit in these expressions. 
Continuing with this procedure would eventually lead t o  a complete formula- 

tion of the problem, but use of the integrated equations makes this unnecessary. 
Thus the axial stress, as inferred from the above results, has the expansion 

pss N ~/JJ (U& + u-1K1+ u&N) + O(S)  

M N @M, + (I(€?), 

(3.6) 

and it follows that the bending movement may be written in the form 

(3.7a) 

where M2 = +pT: ubl = - 1 3P T3 1 V” -1‘ (3.7b) 

Furthermore, the leading velocity terms u - ~  and uo are of the form for which the 
kinematic equations are justified, to leading order, so that (2.11)-(2.13) imply 

aTllaT = 0, aal/aT = -vL~. (3.8), (3.9) 

Equations (3.7 b) and (3.9) provide an additional relationship between M and a 
which enables (2.8) to be written in the form 

3% a ( ’?,,,, a2a1) = A(7)a1+B(7).  (3.10) 

Because of (3.8), the thickness TI is to be regarded as a given function of s. 
Equation (3.10) is the fundamental equation governing the motion of the 

viscida. In  order to solve it, it is appropriate to specify an initial distribution for 
al, together with boundary conditions at  each end of the viscida. The analogous 
problem of the elastica suggests two archetypal problems, namely 

or 
M, = = 0 O }  at the ends. 

(3.11a) 
(3.1lb) 
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However, the second of these (the pinned-end problem) is physically not very 
realistic for our study so the diseussion will be restricted to  (3 . i1  a) .  

Additional end conditions must be imposed since the functions A(r)  and 
B(r) are unknown. These conditions describe the relative motion of the ends. If 
the left end is located a t  the origin of a fixed Cartesian frame, the right end has 
ordinate 

y ( ~ )  = -loL sin a d s ,  

where L is the length of the thread. We make the choice y ( L )  = 0, so that a1 
must satisfy the constraint 

(3.13) 

where, without loss of generality, the length has been assigned the value one. 
(Note that there can be no O(1) change in L during the motion, because the time 
interval is 0(c2).) 

A second constraint follo-ws from the specification of x ( L ) .  First, however, 
notme that from ( 2 . 6 ~ )  and (3.8) we may deduce the result 

T1(Pns)1 = A(7) a,+B(7). 

Differentiating with respect to a, and using (2.6b) then yields 

= Tl(%S)O, 
whence, by virtue of (3.6),  

A(r)  = 4,UTl(u& +v-,Kl). (3.13) 

Thus A(r )  is a measure of the local rate of extension of the viscida, as well as 
equalling the axial load. 

Now x(L)  = cosads, I: 
so that provided that a vanishes a t  the end points 

a x  d L  L aa 
- (L) = - -J sin a - as. 
dt dt 0 at 

But, from (2.10) and (3.13), 

80 that with the choice dx(L)/dt  = - 1 

1 =  - ~ J o z + j o a , & d s .  A(7) I d s  
1 aa 

(3.14) 

This constraint is appropriate when the ends of the viscida are moved towards 
each other with unit relative speed. 

With a, prescribed as a function of s a t  r = 0, equations (3.10), (3.11u), 
(3.12) and (3.14) describe the evolution of al. This problem can be solved using 
eigenfunction expansions. 
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3.2. Solution of the problem for a, 

It is convenient to introduce a new time variable defined by 

& ~ T : ~ d m ( r ) / d r  = -A(r ) ,  m(0) = 0,  

where TF is a constant. The expansions 

then lead to the eigenvalue problem 

#,(O) = #,(I) = 0, #,as = 0. so' 

(3.15) 

(3.16) 

This is not a Sturm-Liouville problem, but nevertheless the familiar arguments 
for establishing orthogonality, etc. (Courant & Hilbert 1962) also work here. 
Furthermore, an associated Sturm-Liouville problem may be defined; 

11.,(0) = $,(I) = 0. 

Expanding each $, in terms of the @, leads to useful results. In  this way it is 
easy to show that for physically sensible choices of T,(s) an infinite set of 
discrete positive eigenvalues {A,} and an infinite set of matually orthogonal 
eigenfunctions {#,} are defined. Moreover, 

lim (h,/n2) = O(1) 
n-+m 

(3.17) 

and, in general, A, lies between yn and Y,+~. If TI is symmetric about s = 4, 
the antisymmetric (about s = 4) eigenfunctions are identical to the antisym- 
metric Sturm-Liouville functions. 

A special case, which can easily be solved, is that of the viscida of constant 
thickness, i.e. 

The symmetric eigenfunctions are then 

T, = T;". 

4, = ( K , / A , ) [ I - C O S ~ ~ ~ - Q A ~ , S ~ ~ A ~ ~ ] ,  SA; = taniA3,, (3.18) 

where K,  is only uniquely specified if we impose a normalization condition, 

$ids = 1. so' 
It is sufficient to note that, for large A,, K,  is then O(A;). The normalized anti- 
symmetric eigenfunctions are 

#, = 24 sin 2nn-s, A ,  = 4n%2, K,  = 0. (3.19) 
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Once the eigenfunctions are determined, the unknown function m(7) can be 
found from the constraint (3.14), whence 

(3.20) 

Further discussion of these results is facilitated by an estimate of the Fourier 
coefficients D,, defined in terms of the initial centre-line deviation by 

It is reasonable, on physical grounds, to restrict ourselves to initial conditions 
that are fairly smooth. More precisely, we shall assume that a2al(s,0)/as2 is 
bounded on the interval. Moreover, for geometrical reasons, the initial data must 
satisfy the constraint (3.12). It is then an easy matter to show, by integrating 
(3.21) by parts twice, that for the viscida of constant thickness D, is O(nP2) or 
smaller when n is large. This estimate is also true in the general case provided that 
Tl is sufficiently smooth. The infinite sum in (3.20) is then convergent, and for 
small 7, 

The initial axial load, which equals the end force needed to drive the motion, is 
then 

which is a decreasing function of the initial centre-line displacement. 
The series in (3.20) may be written in the form 

and this is absolutely convergent, uniformly so in m 2 0. Consequently for large 
m, 

7 N QD: e2mihi + O ( e 2 m h ) .  

An identical argument may be applied to the sum representing al, whence for 
large m, 

a1 N D1emh $,(s) + O(em/hz). 

Combining these two results yields the asymptotic result 

a1 N (27)*$1(~)- (3.22) 

Thus the first mode dominates the solution for large times, and its amplitude 
is independent of the prescribed amplitude at 7 = 0. In comparison the second 
mode has amplitude - 0 , ( 2 ~ / D ? ) @ i h  Of course if D, is zero this result has to 
be modified, and in general $1 in (3.22) has to be replaced by $j, where D j  is 
the first non-zero Fourier coefficient of the initial disturbance. 

The problem is now seen to be one of stability. There is of course a solution 
corresponding to a straight viscida (D, = 0), but this is an isolated solution in 
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the sense that any initial disturbance, no matter how small, will grow in ampli- 
tude; in real life, the viscida will always buckle. The rate of growth of each mode 
of the disturbance depends on the corresponding eigenvalue. Eventually the 
lowest-order mode (that contributes to the initial disturbance) dominates. 
However, the other modes are only algebraically smaller, and it is conceivable 
that this dominance will not materialize, in practice, if there is an appropriate 
marked disparity between the magnitudes of the various Dn. 

Since the solution we have obtained is unbounded, the assumptions on which 
the analysis of this section are based eventually break down. The ‘inner expan- 
sion ’ developed here must, as r -+ a, be replaced by an ‘outer expansion ’. This is 
the subject of the next section. 

4. Analysis when the curvature K = O(1) 

the expansions 
The analysis of this section closely follows that of $ 3, except that it is based on 

ZI - U , + C U ~ +  ..., T N sT,+ ..., 

u N U0+EUl+ ..., p - Po+~pl+ . . - ,  

01 - OLo+ea,+..., K - KO+&,+ ..., 

n = sN,  

where the subscripted variables are functions of s, Nand t .  The solution generated 
in this way can either be used to describe the evolution of an initial given O(1) 
deviation of the centre-line, or be matched with the solution developed in $3. 

The results necessary to close the system of global equations derived in 
0 2 can, as mentioned earlier, be inferred from results for linear elasticity. Never- 
theless, if the procedure of $ 3  is followed we find 

uo = uo(s), vo = -u;/lTo, po = 0, 

u, = u10 + Nu,, 2411 = UoKo - v;, 

v = v,(s), 

pl = -2,u(~~~+K,v,+K,v,)-2,uu~,N etc. 

The second of these implies that there is no O(1) elongation of the viscida, 
as expected. Furthermore (pss)o vanishes, but 

( P ~ ~ ~ ) ~  = 4Aui0 + Kovl + Klvo + uilN), 

whence the bending moment is 

M N +~~,uT~u;~+. . . .  (4.1) 

Since the leading velocity terms uo and vo do not depend on N ,  the kinematic 
equations of $ 2 are applicable, and yield 

aTl/at = 0, ( 4 . 2 ~ )  

(4 .2b )  aol,/at = uoKo - v; = U l l .  
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Equations (4.1), (4.3) and (2.8) then lead to  the equation that governs the evolu- 
tion of the viscida shape, namely 

where Tl is a given function of s. 
Equation (4.3), when linearized for small values of ao, is identical to (3.10), 

but the present problem for a. is not then identical to that of $ 3 for a,. Certainly 
we may choose, as before, 

Also the nonlinear version of (3.. 12) is 

ao(0) = ao(l)  = 0. 

lo1 sin aods = 0, (4.4) 

but the absence of elongation means that the equivalent of (3.14) is 

I = /olsina - - ~ d s .  aa 
* at (4.5) 

It is m-aningful to examine the solution of this system for small values 
of ao. SUC h a solution can be used either to match with the solution of $3, or 
else to de c 'be the early growth of an initially imposed, small (but O(1)) dis- 
turbance. k\ shall consider the latter problem first. 

Since the I nearized version differs from the problem of $ 3  only because the 
constraint ;4.5), when linearized, differs from (3.14), the analysis is very similar 
and it is only the equation for m(7) that is different. Indeed, this equation is 
[cf. (3.20)] 

and for small m, 

Since the bending moment is O($),  it  follows that the mean axial stress is 
O(s2) (i.e. (pss),must vanish) and furthermore, the integrated equations imply that 

A = T1(Fss)2* 
Therefore the initial end load is 

This should be compared with the O(e) end load needed to drive the viscida 
when the curvature is O(B) .  Equation (4.7) reflects this difference in that it is not 
valid when all the D,  vanish. 

When m is large, (4.6) implies the asymptotic result 

so that 

Thus the linearization is only valid when t B  is small, and this can be reconciled 
with the fact that m is large provided that D, is small enough. Just as in $3, 
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the first mode eventually dominates. Of course, when t is not small the lineariza- 
tion is invalid and recourse must be made to numerical methods. 

The development of a solution that can be matched with the O(e) solution 
developed in 0 3 is similar to the above, except that a slight redefinit,ion of m(t) is 
required, with 

lim m(t) = - 00. 

Only then can the eigenfunction expansion vanish as t + 0 .  Now for large 
negative values of m, the high frequency end of the spectrum is dominant, SO 

that only if the expansion for a, is truncated after a fmite number of terms, that 
is 

t+O 

and 

i 
a, = Dnem/Any5n(s) 

n = l  
( 4 . 9 ~ )  

(4.9b) 

can a match be made with the inner solution, which has the behaviour 

a, N (2~)456~(s) as 7 -+ 00, (4.10) 

where, it may be recalled, y5j is the lowest-order mode that contributes to the 
disturbance a t  T = 0. Then as m -f -00 

t N +D?e2mh, a, - (2t)!iy5j(s), (4.11) 

and matching to first order with the inner solution is assured. Note that none of 
the D,  are determined from the first-order matching; however it seems probable 
that D,, . . . , Di-, all vanish. Of course if j = 1 the solution (4.9) becomes 

“0 = (W+y51(4. (4.12) 

Consequently, if the first mode dominates the O(e) solution for large values of T 

(as it will for arbitrary initial disturbances), it will continue to dominate for small 
but O(1) values of t .  Purther evolution of the solution can only be described 
using numerical methods. 

5. Numerical investigation 
This section is concerned with the development of the solution of $4 for values 

of a, large enough to invalidate linearization. If the thickness of the viscida 
is constant the mathematical problem is to solve the equation 

‘ a3a0/as2 at = P( t )  sin a. + G ( t )  cos a, (5.1) 

subject to the constraints 
a! , (O, t )  = ao(l,t) = 0, ( 5 . 2 ~ )  

(5.2b) 
aa! Iol cos a, 2 ds = 0, 

Io1sina, aa 2 d s  = I. 
( 5 . 2 ~ )  
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F I G U ~  2. Buckled viscida. (a )  First mode: a(s,O) = -0*lsin2ms. ( b )  Second mode: 
a ( s , O )  = (0~2/a)(cosas-I)+0~1sinm. ( c )  Third mode: a ( s , O )  = -0-lsin4ns. (d )  Mixed 
modes: a ( s ,  0) = - 0.1 sin 2ns - 0.2 sin 4ns. 

Formally integrating (5.1 ) , we have 

at (s,t) = E(t)/:ds’/: s i n a , d s ” + G ( t ) / ~ d s ’ ~ ~  cosa,ds~’+H(t)s+I(t). 

Thus if a, is a known function of s at  any time, the constraints (5.2) may be 
used to determine the instantaneous values of P, G, H and I and this in turn 
leads to knowledge of aa/at as a function of s. Changes in the configuration may 
then be determined by a forward integration in time. Figures 2(a)-(d) show 
some typioal results of calculations of this kind. Figures 2 (a)-(c) show the evolu- 
tion of configurations which for small a, coincide, respectively, with the first 
three eigenfunctions described by (3.18)t and (3.19). The third mode appears to 
be of special interest since it compares favourably with the photographs repro- 
duced in Taylor’s (1969) paper. Other than noting at this time that Taylor’s 
comparison with the third mode of buckling of a pinned end elastica appears to 
be inappropriate, we shall defer further discussion of these results until $7.  

t a is the smallest root of +p = tan+p. 
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Figure 2 (d )  shows the evolution of'a disturbance that is initially a linear com- 
bination of the first two antisymmetric eigenfunctions. A configuration closely 
resembling the first mode quickly emerges, in agreement with the theoretical 
prediction. 

6. The stretching problem 
6.1. 01 is O(1) 

We now want to consider the buckling problem in reverse. That is, a t  t = 0 
the viscida has an arbitrary displacement and then the ends are pulled apart 
with an O( I )  velocity. Since the problem is kinematically reversible it might be 
thought that the stretching problem has no new features. However, an arbitrary 
displacement, as we have seen, cannot be generated by buckling from physically 
reasonable initial data; the displacement generated in this way is dominated by 
the low-order modes. Thus if an arbitrary displacement is smoothed by stretch- 
ing pathological behaviour can be anticipated as the displacement vanishes. 

Let us start by assuming that the displacement of the centre-line is O(1). Then 
the formulation of the problem is identical to that of 0 4 except that the constraint 
(4.5) is replaced by 

The change in sign reflects the fact that here the ends of the viscida are pulled 
apart with unit relative speed. 

If a, is small enough to justify linearization, a solution can be constructed by 
eigenfunction expansions. The only difference from the earlier analyses is the 
equation satisfied by m(t), which is now 

Integration of this equation reveals that, as m -+ - co, t -+ 4 ED;, so that after 
a h i t e  time the viscida is straight to O( 1).  The approach to the straight configura- 
tion is easily described if the initial disturbance is formed from only the first j 
eigenfunctions. For then, as m -+ - co, 

01, - D j  em& +j(s) 

and 
i 

whence 01, - [C D i  - 2t]t gj(s). (6.3) 

Thus, as the centre-line deviation dies out, the solution is dominated by the 
highest-order mode, and is highly oscillatory i f j  is large. 

I f j  is not finite the discussion is more difficult. A special case discussed briefly 
in the appendix suggests that the decay is then exponential in time, rather than 
algebraic like (6.3). Not surprisingly, the number of oscillations between s = 0 
and s = I becomes unbounded as t 4 +ED;. This is the pathological behaviour 
hinted at earlier. 
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6.2. a i s  O(s)  or smaller 

In the case when the initial deviation of the centreline is O(s) ,  the governing 
equations are those of $ 3 except that (3.14) is replaced by 

As a consequence, the equation defining m,(T) is 

The disturbance dies out in the limit m --f - co coincident with the asymptotic 
result 

The asymptotics for a, in terms of m are identical to those of $6.1 for ao; only 
when viewed as functions of time are there any differences. Thus if the highest- 
order mode that contributes to the disturbance is q5j, we have the asymptotic 
result 

a1 N Dj  em/% q5j(s) 

and in view of (6.5) the final decay in time is exponential. This is to be compared 
with the algebraic behaviour of (6.3). If an infinite number of the modes make a 
contribution, the asymptotic result (A 6) (see appendix) is still appropriate, only 
now 1 is proportional to the time r. 

During the decay of the O(s)  disturbance, the rate of elongation of the thread 
plays an important role. However, there is no significant increase in length 
since the time interval is so small, being O(s2). Thus as T -+ co a new stage must 
emerge in the solution, in which the dominant motion is simply one of elongation. 
This elongation must occur over an O(1) time interval. Clearly during this stage 
there is no O(B) deviation of the centreline. In  fact the above results strongly 
suggest that over most of the length of the viscida the curvature is exponentially 
small. 

To analyse the stretching of a straight viscida we carry out an analysis 
analogous to that of 5 3, but in a Cartesian co-ordinate system and based on the 
expansions 

u N uo+sul+ ..., w - swl+ ..., etc., 

where the subscripted variables are functions of x, Y = y/s and t .  It is easily 
shown that u,, is independent of Y and is given by the expression 
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Fixcd 
end 

x, u 
FIGURE 3. Straight stretched viscida. 

If the left end ( x  = 0)  is fixed and the right end (x = L )  is moved to the right 
with unit speed we find that 

uo = S,”$/JoL$. 
This is simply a statement that the mean axial force is continuous. In  addition 
we have the kinematic condition (2.12), which reduces to . 

If TI is initially independent of x,  an assumption that we adopted to discuss the 
asymptotics of this section, it remains x independent and the viscida deforms as 
a rectangle. However, this final stage of the motion is going to occur in the general 
case, so that it is of interest to discuss the general features of (6.6) and (6.7). 
Let us consider the simple but illuminating case of a straight viscida divided into 
two sections of constant thickness (figure 3). Such a viscida, when stretched, will 
maintain its piecewise constant-thickness shape, and what is of interest is the 
manner in which the two thicknesses Tl and T, change with time. The total length 
of the viscida is 1 +t, t > 0, and the first section, which has thickness TI, has 
length p ( t ) .  With the left end fixed, the result (6.6) implies that 

dp N )  d x  N) d x  l+tdx 

= J o  d S 0  .,+f,,) d * (6.8) 

It is more convenient to deal with the fractional length Y(t)  of the f i s t  section 
defined by 

for this satisfies the equation 
Y(t) = P ( t ) / ( l +  t )  

-- ( 5 + 4  where Ic = - Tl - dc- 
dt 
1 +t Y(1 -Y ) ’  T,-T1‘ 

Now the volume of each section will be conserved during the motion, i.e. 

(1 +t)YTI = V,, (1 + t )  ( 1 - 6 )  Tz = V,. 
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This determines k in terms of <, whence 

where V = q + G  is the total volume. It follows that if Tl(0) > TJO), so that 
< ( O )  < V,/V, then 5 remains smaller than V,/V during the motion, and for large 
times 6 -+ 0 (i.e. T,/T, -+ 0). On the other hand, if Tl(0) < T,(O) then for large times 
5 --f 1 (i.e. Tl/T, -+ 0). In  other words the thinner section stretches more rapidly. 
Since an arbitrary thickness distribution can be approximated by a string of 
rectangular sections, this conclusion is true in general. This is a ‘necking’ 
instability. 

7. Concluding remarks and comparison with the elastica problem 
The work described in this paper was partly motivated by a simple experiment 

of Taylor’s (1969) in which the ends of a thin thread of highly viscous fluid were 
pushed together. One of our primary aims was to see if there are any favoured 
shapes associated with such a procedure. In  this connexion we have shown that 
the first mode will emerge in a dominant role from an arbitrary sum of appropriate 
eigenfunctions. This first mode displays only one zero for a, apart from those at 
the two ends (e.g. figure 2 (u)). The only photographs reprodaced by Taylor show 
deformed shapes which closely resemble the third mode (figure 2c) .  One possible 
explanation for this is that the first two modes made no significant contribution 
to the initial displacement of Taylor’s thread. Recall in this connexion that 
the higher modes are only ulgebruicully smaller, so that if D, is significantly 
larger than D, and D, it is conceivable that the third mode will dominate. It 
would, perhaps, be worth repeating his experiment. We plan to do this and shall 
briefly report the results in a second paper which will be primarily concerned with 
surface-tension effects. 

A second possible explanation for the discrepancy is that Taylor may have 
rotated the ends as he pushed them together. Certainly it is possible to generate 
shapes comparable with those he observed by appropriate relaxation of the end 
conditions used in the present paper. 

Taylor makes an explicit comparison between the experimental result and the 
third mode of buckling of a pinned-end elastica. A much more convincing visual 
Comparison can be made with the third mode for a clamped-end elastica, and it is 
worth noting the similarities between that problem and the present one. O(1) 
deformations of an elastica are governed by the equations 

I $(T3$) = Nsina+Mcosa, 

a(0) = a(1) = 0, I 
(7.1) 

F L M  69 2 
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where 6 is given, and the only essential difference between these equations and 
those of $ 4  is the absence of the time derivative from the left side of ( 7 . 1 ) .  This 
is a direct consequence of the analogy between the equations of linear elasticity 
and those of Stokes flow. It is clear that the buckling modes (eigenfunctions) 
of the linearized problem (a  small) are identical to the $j of $ 4 .  However, when a 
is not small, the difference between the equations plays a fundamental role 
and the ‘natural’ shapes of the viscida (the nonlinear continuation of the eigen- 
functions) a,re only qualitatively similar to the elastica shapes. 

One question that might arise in comparing the present results with Taylor’s 
experiment is whether there is any fundamental difference between the two- 
dimensional situation analysed here and the real three-dimensional problem. 
Nachman (1973) ,  in his thesis, has examined certain aspects of the problem for a 
viscida of circular cross-section whose centre-line moves in a plane. The result 
analogous to ( 4 . 2 ~ )  is that the cross-section remains circular, and the subsequent 
problem for a, is identical to that of $ 4 .  I n  the absence of surface tension three- 
dimensional effects do not appear to play any significant role. 

Helpful discussions with G. S. S. Ludford are gratefully acknowledged. Part of 
this work was supported by AFOSR Grant AFOSR 73-2497. 

Appendix 
Consider the stretching of a viscida whose small but O( 1) displacement can 

be expressed as a sum of the antisymmetric eigenfunctions 
00 

a. = 29 D,exp (m/4n2n2)  sin Bnns, (A 1) 

D, = 2* a0(s, 0) sin 2nnsds.  (A 2)  

n = l  

s: where 

It is clear that, as m -+ - 00, a, vanishes slower than ekm for any k,  and the number 
of oscillations between s = 0 and s = 1 is unbounded. Furthermore, for large 
values of - m an arbitrary finite number of terms may be omitted from the sum 
(A1) with only an exponentially small error. Thus the asymptotic behaviour 
may be deduced by replacing the Fourier coefficients D, by their asymptotic 
representation for large n. If the initial disturbance is infinitely differentiable in 
the open interval (0, I)  the leading contribution to the Fourier coefficients for 
large n arises from the fact that the derivatives of the associated periodic func- 
tion are discontinuous at integer values of s. Thus integrating ( A 2 )  by parts 
yields 

with an error that is no larger than O(n-4) if the fist four derivatives of a,(s, 0) 
are bounded. Then the leading term in the asymptotic expansion of a, is identical 
with the leading term in the expansion of 

00 

f = C n-3e-llnz sin 2nn4 
n = l  
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and 1 = -m/47r2. 

If we take the Laplace transform off with respect to I and sum the series, we 
find -C  n- sinh [ (+ - s) 2n-/p+] 

f = % /  dpepl - 
Br [ 2 sinh (7r/p9) 

The only singularities of the integrand are simple poles on the negative real axis 
that accumulate a t  the origin, and the asymptotic behaviour for large 1 will be 
deduced by a method based on an idea of G. S. S. Ludford, for which we express 
our gratitude. 

If the inversion contour is partly bent back around the negative real axis, the 
constant may be omitted from the integrand and the denominator may be re- 
placed by 

cosech (n/p6) = 2 exp ( - 7r/p6) 2 exp ( - 2nn/p$) 
m 

n=O 

since Rep4 > 0. Then, writing (T = l%p, we find 

(A 5) 
This is a sum of integrals of the form 

where k is a positive real constant, and each of these may be asymptotically 
evaluated using the method of steepest descent. The steepest-descent path 
through the saddle point 

starts a t  -co++i(@)* 34, passes through the saddle point and then crosses the 
positive imaginary axis before reversing itself and approaching the origin in a 
direction that is parallel to the real axis, in the limit. Its mirror image in the real 
axis is the steepest-descent path through the saddle point at  

(T = (+k)%e%in 

(T = (+k)+ee-%n. 

The union of these two paths is a suitable inversion path for the evaluation of Ik, 
and the dominant contribution, for large I, comes from the immediate vicinity 
of the two saddle points. In  this way we deduce the asymptotic result 

It is clear that the leading contribution to f comes from the term with the smallest 
value of k .  Thus if 0 < s < &, 

2-2 
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where k, = 3 ~ s .  The symmetry condition implicit in (A 1) extends the result to 
the whole interval. There are regions of non-uniformity at  s = 0, 4 and 1 but 
we do not discuss them. 

In order to complete the asymptotic description it is necessary to deduce the 
asymptotic behaviour of m(t)  from (6.2). We have 

CD: - 2t = XD:e2mlhn 

and, still restricting ourselves to initial disturbances that are sums of the anti- 
symmetric eigenfunctions, we note that the right-hand side is asymptotically 
proportional to 

Proceeding in a way very similar to the discussion off, an integral representation 
for g may be found, namely 

where the Bromwich contour has been bent towards Rep = -00 to ensure con- 
vergence. The asymptotic analysis then yields the result 

so that 

g - +~*(2Z)-2 as I +  00, 

I N constant (ED2,- st)-%. 

Combining this result with (A 6) ,  we may conclude that over most of the length of 
the viscida the approach to the straight configuration is exponentially rapid. 
This may be compared with the algebraic behaviour of (6.3), valid when the eigen- 
function expansion is truncated. During the approach, the viscida becomes highly 
crinkled. 

The present analysis can be extended to include the symmetric eigenfunctions 
but we have not done so. Our sole aim was to give some concrete indication of 
what can happen when the eigenfunction expansion is not truncated. 
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